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Abstract. Eliminating vulnerabilities from low-level code is vital for
securing software. Static analysis is a promising approach for discov-
ering vulnerabilities since it can provide developers early feedback on
the code they write. But, it presents multiple challenges not the least of
which is understanding what makes a bug exploitable and conveying this
information to the developer. In this paper, we present the design and
implementation of a practical vulnerability assessment framework, called
Mélange. Mélange performs data and control flow analysis to diagnose
potential security bugs, and outputs well-formatted bug reports that help
developers understand and fix security bugs. Based on the intuition that
real-world vulnerabilities manifest themselves across multiple parts of a
program, Mélange performs both local and global analyses in stages. To
scale up to large programs, global analysis is demand-driven. Our proto-
type detects multiple vulnerability classes in C and C++ code including
type confusion, and garbage memory reads. We have evaluated Mélange
extensively. Our case studies show that Mélange scales up to large code-
bases such as Chromium, is easy-to-use, and most importantly, capable
of discovering vulnerabilities in real-world code. Our findings indicate
that static analysis is a viable reinforcement to the software testing tool
set.
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1 Introduction

Vulnerabilities in popularly used software are not only detrimental to end-user
security but can also be hard to identify and fix. Today’s highly inter-connected
systems have escalated the damage inflicted upon users due to security com-
promises as well as the cost of fixing vulnerabilities. To address the threat
landscape, software vendors have established mechanisms for software quality
assurance and testing. A prevailing thought is that security bugs identified and
fixed early impose lower costs than those identified during the testing phase or in
the wild. Thus, vulnerability re-mediation—the process of identifying and fixing
vulnerabilities—is being seen as part of the software development process rather
than in isolation [28].
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Program analysis provides a practical means to discover security bugs during
software development. Prior approaches to vulnerability discovery using static
code analysis have ranged from simple pattern-matching to context and path-
sensitive data-flow analysis. For instance, ITS4 [42]—a vulnerability scanner
for C/C++ programs—parses source code and looks up lexical tokens of in-
terest against an existing vulnerability database. In our initial experiments, the
pattern-matching approach employed by ITS4 produced a large number of warn-
ings against modern C, and C++ codebases. On the contrary, security vulnera-
bilities are most often, subtle corner cases, and thus rare. The approach taken by
ITS4 is well-suited for extremely fast analysis, but the high amount of manual
effort required to validate warnings undermines the value of the tool itself.

On the other end of the spectrum, the Clang Static Analyzer [4] presents an
analytically superior approach for defect discovery. Precise—context and path
sensitive—analysis enables Clang SA to warn only when there is evidence of
a bug in a feasible program path. While precise warnings reduce the burden
of manual validation, we find that Clang SA’s local inter-procedural analysis
misses security bugs that span file boundaries. The omission of bugs that span
file boundaries is significant especially for object-oriented code3, where object
implementation and object use are typically in different source files. A natural
solution is to make analysis global. However, global analysis does not scale up
to large programs.

In this paper, we find a middle ground. We present the design and implemen-
tation of Mélange, a vulnerability assessment tool for C and C++ programs, that
performs both local and global analysis in stages to discover potential vulner-
abilities spanning source files. Mélange has been implemented as an extension
to the LLVM compiler infrastructure [32]. To keep analysis scalable, Mélange
performs computationally expensive analyses locally (within a source file), while
performing cheaper analyses globally (across the whole program). In addition,
global analysis is demand-driven: It is performed to validate the outcome of local
analyses. To provide good diagnostics, Mélange primarily analyzes source code.
It outputs developer-friendly bug reports that point out the exact position in
source code where potential vulnerabilities exist, why they are problematic, and
how they can be remedied.

Results from our case studies validate our design decisions. We find that
Mélange is capable of highlighting a handful of problematic corner cases, while
scaling up to large programs like Chromium, and Firefox. Since Mélange is im-
plemented as an extension to a widely used compiler toolchain (Clang/LLVM),
it can be invoked as part of the build process. Moreover, our current implementa-
tion is fast enough to be incorporated into nightly builds4 of two large codebases
(MySQL, Chromium), and with further optimizations on the third (Firefox). In
summary, we make the following contributions.

3All the major browsers including Chromium and Firefox are implemented in ob-
ject-oriented code.

4Regular builds automatically initiated overnight on virtual machine clusters
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1. We present the design and implementation of Mélange, an extensible pro-
gram analysis framework.

2. We demonstrate the utility of Mélange by employing it to detect multiple
classes of vulnerabilities, including garbage reads and incorrectly typed data,
that are known to be a common source of exploitable vulnerabilities.

3. We evaluate Mélange extensively. We benchmark Mélange against NIST’s
Juliet benchmark [36] for program analysis tools. Mélange has thus far de-
tected multiple known vulnerabilities in the PHP interpreter, and Chromium
codebases, and discovered a new defect in Firefox.

2 Background: Clang and LLVM

Mélange is anchored in the Clang/LLVM open-source compiler toolchain [13],
an outcome of pioneering work by Lattner et al. [32]. In this section, we re-
view components of this toolchain that are at the core of Mélange’s design.
While Clang/LLVM is a compiler at heart, it’s utility is not limited to code
generation/optimization. Different parts of the compiler front-end (Clang) and
back-end (LLVM) are encapsulated into libraries that can be selectively used by
client systems depending on their needs. Thus, the LLVM project lends itself
well to multiple compiler-technology-driven use-cases, program analysis being
one of them.

We build Mélange on top of the analysis infrastructure available within the
LLVM project. This infrastructure mainly comprises the Clang Static Analyzer—
a source code analyzer for C, C++, and Objective-C programs—and the LLVM
analyzer/optimizer framework which permits analysis of LLVM Bitcode. In the
following paragraphs, we describe each of these components briefly.

2.1 Clang Static Analyzer

The Clang Static Analyzer (Clang SA) is similar in spirit to Metal/xgcc, which
its authors classify as a “Meta-level Compilation” (MC) framework [21,24]. The
goal of an MC framework is to allow for modular extensions to the compiler that
enable checking of domain-specific program properties. Abstractly viewed, an
MC framework comprises a set of checkers (domain-specific analysis procedures)
and a compilation system.

The division of labor envisioned by Hallem et al. [24] is that checkers only
encode the property to check, leaving the mechanics of the actual checking to the
compilation system. The compilation system facilitates checking by providing
the necessary analysis infrastructure. Figure 1 shows how an MC framework
is realized in Clang SA. Source files are parsed and subsequently passed on
to the Data-Flow Analysis engine (DFA engine), which provides the analysis
infrastructure required by checkers. Checkers encode the program property to
be checked and produce bug reports if a violation is found. Bug reports are then
reviewed by a human analyst.
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Fig. 1: Clang Static Analyzer overview

Data-flow Analysis Engine Clang SA performs Context and Path sensitive in-
ter-procedural data-flow analysis. Context sensitivity means that the analysis
preserves the calling context of function calls; path sensitivity means that the
analysis explores paths forked by branch statements independently. Context sen-
sitivity is realized in the Graph Reachability Engine which implements a name-
sake algorithm proposed by Reps et al. [37]. Path sensitivity is implemented
in the Symbolic Execution Engine. The symbolic execution engine uses static
Forward Symbolic Execution (FSE) [38] to explore program paths in a source
file.

Checkers Checkers implement domain-specific checks and issue bug reports.
Clang SA contains a default suite of checkers that implement a variety of checks
including unsafe API usage, and memory access errors. More importantly, the
checker framework in Clang SA can be used by programmers to add custom
checks. To facilitate customized checks, Clang SA exposes callbacks (as APIs)
that hook into the DFA engine at pre-defined program locations. Clang SA and
its checkers seen together, demonstrate the utility of meta-level compilation.

2.2 LLVM Pass Infrastructure

The LLVM pass infrastructure [13] provides a modular means to perform anal-
yses and optimizations on an LLVM Intermediate Representation (IR) of a pro-
gram. LLVM IR is a typed, yet source-language independent representation of a
program that facilitates uniform analysis of whole-programs or whole-libraries.

Simply put, an LLVM Pass is an operation (procedure invocation) on a unit
of LLVM IR code. The granularity of code operated on can vary from a Function
to an entire program (Module in LLVM parlance). Passes may be run in sequence,
allowing a successive pass to reuse information from (or work on a transformation
carried out by) preceding passes. The LLVM pass framework provides APIs to
tap into source-level meta-data in LLVM IR. This provides a means to bridge
the syntactic gap between source-level and IR-level analyses. Source literals may
be matched against LLVM IR meta-data programmatically. Mélange takes this
approach to teach the LLVM pass what a source-level bug report means.
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Fig. 2: Mélange overview

3 Mélange

Our primary goal is to develop an early warning system for security-critical
software defects. We envision Mélange as a tool that assists a developer in iden-
tifying, and fixing potential security bugs during software development. Figure
2 provides an overview of our approach. Mélange comprises four high-level com-
ponents: the build interceptor, the LLVM builder, the source analyzer, and the
Whole-Program (WP) analyzer. We summarize the role of each component in
analyzing a program. Subsequently, we describe them in greater detail.

1. Build Interceptor. The build interceptor is a program that interposes be-
tween the build program (e.g., GNU-Make) and the compilation system (e.g.,
Clang/LLVM). In Mélange, the build interceptor is responsible for correctly
and independently invoking the program builders and the source analyzer.
(§3.1)

2. LLVM Builder. The LLVM builder is a utility program that assists in gen-
erating LLVM Bitcode for C, C++, and Objective-C programs. It mirrors
steps taken during native compilation onto LLVM Bitcode generation. (§3.1)

3. Source Analyzer. The source analyzer executes domain-specific checks on a
source file and outputs candidate bug reports that diagnose a potential secu-
rity bug. The source analyzer is invoked during the first stage of Mélange’s
analysis. We have implemented the source analyzer as a library of checkers
that plug into a patched version of Clang SA. (§3.2)

4. Whole-Program Analyzer. The WP analyzer examines candidate bug reports
(from Step 3), and either provides extended diagnostics for the report or
classifies it as a false positive. The developer is shown only those reports
that have extended diagnostics i.e., those not classified as a false positive by
the WP analyzer. We have implemented the WP analyzer in multiple LLVM
passes. (§3.3)
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3.1 Analysis Utilities

Ease-of-deployment is one of the design goals of Mélange. We want software de-
velopers to use our analysis framework in their build environments seamlessly.
The build interceptor and the LLVM builder are analysis utilities that help us
achieve this goal. The build interceptor and the LLVM builder facilitate trans-
parent analysis of codebases by plugging in Mélange’s analyses to an existing
build system. We describe them briefly in the following paragraphs.

Build Interceptor Our approach to transparently analyze large software projects
hinges on triggering analysis via the build command. We use an existing build
interceptor, scan-build [12], from the Clang project. scan-build is a command-line
utility that intercepts build commands and invokes the source analyzer in tandem
with the compiler. Since Mélange’s WP analysis is targeted at program (LLVM)
Bitcode, we instrument scan-build to not only invoke the source analyzer, but
also the LLVM builder.

LLVM Builder Generating LLVM Bitcode for program libraries and executables
without modifying source code and/or build configuration is a daunting task.
Fortunately, the Whole-program LLVM (WLLVM) [14], an existing open-source
LLVM builder, solves this problem. WLLVM is a python-based utility that lever-
ages a compiler for generating whole-program or whole-library LLVM Bitcode.
It can be used as a drop-in replacement for a compiler i.e., pointing the builder
(e.g., GNU-Make) to WLLVM is sufficient.

3.2 Source Analyzer

The source analyzer assists Mélange in searching for potential bugs in source
code. We build a novel event collection system that helps detect both taint-style
vulnerabilities as well as semantic defects. Our event collection system is imple-
mented as a system of taints on C and C++ language constructs (Declarations).
We call the underlying mechanism Declaration Tainting because taints in the
proposed event collection system are associated with AST Declaration identifiers
of C and C++ objects. Since declaration tainting is applied on AST constructs,
it can be carried out in situations where local symbolic execution is not possible.

We write checkers to flag defects. Checkers have been developed as clients
of the proposed event collection system. The division of labor between checkers
and the event collection system mirrors the Meta-level Compilation concept:
Checkers encode the policy for flagging defects, while the event collection system
maintains the state required to perform checks. We have prototyped this system
for flagging garbage (uninitialized) reads5 of C++ objects, incorrect type casts
in PHP interpreter codebase, and other Common Weakness Enumerations (see
§4).

We demonstrate the utility of the proposed system by using the code snippet
shown in Listing 1.1 as a running example. Our aim is to detect uninitialized

5The algorithm for flagging garbage reads is based on a variation of gen-kill sets [30].
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reads of class members in the example. The listing encompasses two source files,
foo.cpp and main.cpp, and a header file foo.h. We maintain two sets in the
event collection system: the Def set containing declaration identifiers for class
members that have at least one definition, and the UseWithoutDef set containing
identifiers for class members that are used (at least once) without a preceding
definition. We maintain an instance of both sets for each function that we analyze
in a translation unit i.e., for function F , ∆F denotes the analysis summary of
F that contains both sets. The checker decides how the event collection sets
are populated. The logic for populating the Def and UseWithoutDef sets is
simple. If a program statement in a given function defines a class member for
the very first time, we add the class member identifier to the Def set of that
function’s analysis summary. If a program statement in a given function uses a
class member that is absent from the Def set, we add the class member identifier
to the UseWithoutDef set of that function’s analysis summary.

1 // foo.h

2 class foo {

3 public:

4 int x;

5 foo() {}

6 bool isZero ();

7 };

8

9 // foo.cpp

10 #include "foo.h"

11

12 bool foo:: isZero () {

13 if (!x)

14 return true;

15 }

16

17 // main.cpp

18 #include "foo.h"

19

20 int main() {

21 foo f;

22 if (f.isZero ())

23 return 0;

24 return 1;

25 }

Listing 1.1: Running example–The foo object does not initialize its class
member foo::x. The call to isZero on Line 22 leads to a garbage read on
Line 13.

In Listing 1.1, when function foo::isZero in file foo.cpp is being analyzed,
the checker adds class member foo::x to the UseWithoutDef set of ∆foo::isZero
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after analyzing the branch condition on Line 13. This is because the checker
has not encountered a definition for foo::x in the present analysis context.
Subsequently, analysis of the constructor function foo::foo does not yield any
additions to either the Def or UseWithoutDef sets. So ∆foo::foo is empty. Finally,
the checker compares set memberships across analysis contexts. Since foo::x is
marked as a use without a valid definition in ∆foo::isZero and foo::x is not a
member of the Def set in the constructor function’s analysis summary (∆foo::foo),
the checker classifies the use of Line 13 as a candidate bug. The checker encodes
the proof for the bug in the candidate bug report. Listing 1.2 shows how candi-
date bug reports are encoded. The bug report encodes the location and analysis
stack corresponding to the potential garbage (uninitialized) read.

The proposed event collection approach has several benefits. First, by
retrofitting simple declaration-based object tainting into Clang SA, we enable
Checkers to perform analysis based on the proposed taint abstraction. Due to
its general-purpose nature, the taint abstraction is useful for discovering other
defect types such as null pointer dereferences. Second, the tainting APIs we
expose are opt-in. They may be used by existing and/or new checkers. Third,
our additions leverage high-precision analysis infrastructure already available in
Clang SA. We have implemented the event collection system as a patch to the
mainline version of Clang Static Analyzer. In the next paragraph, we describe
how candidate bug reports are analyzed by our whole-program analyzer.

3.3 Whole-Program Analyzer

Whole-program analysis is demand-driven. Only candidate bug reports are an-
alyzed. The analysis target is an LLVM Bitcode file of a library or executable.
There are two aspects to WP analysis: Parsing of candidate bug reports to con-
struct a query, and the analysis itself. We have written a simple python-based
parser to parse candidate bug reports and construct queries. The analysis itself is
implemented as a set of LLVM passes. The bug report parser encodes queries as
preprocessor directives in a pass header file. A driver script is used to recompile,
and run the pass against all candidate bug reports.

Our whole-program analysis routine is composed of a CallGraph analysis
pass. We leverage an existing LLVM pass called the Basic CallGraph pass to
build a whole-program call graph. Since the basic pass misses control flow at
indirect call sites, we have implemented additional analyses to improve upon
the precision of the basic callgraph. Foremost among our analyses is Class Hi-
erarchy Analysis (CHA) [20]. CHA enables us to devirtualize those dynamically
dispatched call sites where we are sure no delegation is possible. Unfortunately,
CHA can only be undertaken in scenarios where no new class hierarchies are
introduced. In scenarios where CHA is not applicable, we examine call instruc-
tions to resolve as many forms of indirect call sites as possible. Our prototype
resolves aliases of global functions, function casts etc.

Once program call graph has been obtained, we perform a domain-specific
WP analysis. For instance, to validate garbage reads, the pass inspects loads and
store to the buggy program variable or object. In our running example (Listing
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1.1), loads and stores to the foo::x class member indicated in candidate bug
report (Listing 1.2) are tracked by the WP garbage read pass. To this end, the
program call graph is traversed to check if a load of foo::x does not have a
matching store. If all loads have a matching store, the candidate bug report
is classified as a false positive. Otherwise, program call-chains in which a load
from foo::x does not have a matching store are displayed to the analyst in the
whole-program bug report (Listing 1.2).

// Source -level bug report

// report -e6ed9c.html

...

Local Path to Bug: foo::x->_ZN3foo6isZeroEv

Annotated Source Code

foo.cpp :4:6: warning: Potentially uninitialized

object field

if (!x)

^

1 warning generated.

// Whole -program bug report

---------- report -e6ed9c.html ---------

[+] Parsing bug report report -e6ed9c.html

[+] Writing queries into LLVM pass header file

[+] Recompiling LLVM pass

[+] Running LLVM BugReportAnalyzer pass against

main

---------------------------------------

Candidate callchain is:

foo:: isZero ()

main

-----------------------

Listing 1.2: Candidate bug report (top) and whole-program bug report
(bottom) for garbage read in the running example shown in Listing 1.1.

4 Evaluation

We have evaluated Mélange against both static analysis benchmarks and real-
world code. To gauge Mélange’s utility, we have also tested it against known
defects and vulnerabilities. Our evaluation seeks to answer the following ques-
tions:

– What is the effort required to use Mélange in an existing build system? (§4.1)
– How does Mélange perform against static analysis benchmarks? (§4.2)
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– How does Mélange fare against known security vulnerabilities? (§4.3)

– What is the analysis run-time and effectiveness of Mélange against large
well-tested codebases? (§4.4)

4.1 Deployability

Ease-of-deployment is one of the design goals of Mélange. Build interposition al-
lows us to analyze codebases as is, without modifying build configuration and/or
source code. We have deployed Mélange in an Amazon compute instance where
codebases with different build systems have been analyzed (see §4.4). Another
benefit of build system integration is incremental analysis. Only the very first
build of a codebase incurs the cost of end-to-end analysis; subsequent analyses
are incremental. While incremental analysis can be used in conjunction with
daily builds, full analysis can be coupled with nightly builds and initiated on
virtual machine clusters.

4.2 NIST Benchmarks

We used static analysis benchmarks released under NIST’s SAMATE project [35]
for benchmarking Mélange’s detection rates. In particular, the Juliet C/C++ test
suite (version 1.2) [36] was used to measure true and false positive detection rates
for defects spread across multiple categories. The Juliet suite comprises test sets
for multiple defect types. Each test set contains test cases for a specific Com-
mon Weakness Enumeration (CWE) [41]. The CWE system assigns identifiers
for common classes of software weaknesses that are known to lead to exploitable
vulnerabilities. We implemented Mélange checkers and passes for the following
CWE categories: CWE457 (Garbage or uninitialized read), CWE843 (Type con-
fusion), CWE194 (Unexpected Sign Extension), and CWE195 (Signed to Un-
signed Conversion Error). With the exception of CWE457, the listed CWEs have
received scant attention from static analysis tools. For instance, type confusion
(CWE843) is an emerging attack vector [33] for exploiting popular applications.

Figure 3 summarizes the True/False Positive Rates (TPRs/FPRs) for Clang
SA and Mélange for the chosen CWE benchmarks. Currently, Clang SA only sup-
ports CWE457. Comparing reports from Clang SA and Mélange for the CWE457
test set, we find that the former errs on the side of precision (fewer false posi-
tives), while the latter errs on the side of caution (fewer false negatives). For the
chosen CWE benchmarks, Mélange attains a true-positive rate between 57–88
%, and thus, it is capable of spotting over half of the bugs in the test suite.

Mélange’s staggered analysis approach allows it to present both source file
wide and program wide diagnostics (see Figure 4). In contrast, Clang SA’s di-
agnostics are restricted to a single source file. Often, the call stack information
presented in Mélange’s extended diagnostics has speeded up manual validation
of bug reports.
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Fig. 3: Juliet test suite: True Positive Rate (TPR) and False Positive Rate (FPR)
for Mélange, and Clang Static Analyzer. Clang SA supports CWE457 only.

4.3 Detection of Known Vulnerabilities

We tested five known type-confusion vulnerabilities in the PHP interpreter with
Mélange. All of the tested flaws are taint-style vulnerabilities: An attacker-con-
trolled input is passed to a security-sensitive function call that wrongly interprets
the input’s type. Ultimately all these vulnerabilities result in invalid memory
accesses that can be leveraged by an attacker for arbitrary code execution or
information disclosure. We wrote a checker for detecting multiple instances of
this vulnerability type in the PHP interpreter codebase. For patched vulnera-
bilities, testing was carried out on unpatched versions of the codebase. Mélange
successfully flagged all known vulnerabilities. The first five entries of Table 1
summarize Mélange’s findings. Three of the five vulnerabilities have been as-
signed Common Vulnerabilities and Exposures (CVE) identifiers by the MITRE
Corporation. Reporters of CVE-2014-3515, CVE-2015-4147, and PHP report ID
73245 have received bug bounties totaling $5500 by the Internet Bug Bounty
Panel [7].

In addition, we ran our checker against a recent PHP release candidate (PHP
7.0 RC7) released on 12th November, 2015. Thus far, Mélange has drawn atten-
tion to PHP sub-systems where a similar vulnerability may exist. While we
haven’t been able to verify if these are exploitable, this exercise demonstrates
Mélange’s utility in bringing attention to multiple instances of a software flaw
in a large codebase that is under active development.

4.4 Case Studies

To further investigate the practical utility of Mélange, we conducted case stud-
ies with three popular open-source projects, namely, Chromium, Firefox, and
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Codebase CVE ID (Rating) Bug ID Vulnerability Known/New

PHP CVE-2015-4147 69085 [9] Type-confusion Known
PHP CVE-2015-4148 69085 [9] Type-confusion Known
PHP CVE-2014-3515 67492 [8] Type-confusion Known
PHP Unassigned 73245 [11] Type-confusion Known
PHP Unassigned 69152 [10] Type-confusion Known
Chromium (Medium-Severity) 411177 [2] Garbage read Known
Chromium None 436035 [3] Garbage read Known
Firefox None 1168091 [1] Garbage read New

Table 1: Detection summary of Mélange against production codebases. Mélange
has confirmed known vulnerabilities and flagged a new defect in Firefox. Listed
Chromium and Firefox bugs are not known to be exploitable. Chromium bug
411177 is classified as a Medium-Severity bug in Google’s internal bug tracker.

MySQL. We focused on detecting garbage reads only. In the following para-
graphs, we present results from our case studies emphasizing analysis effective-
ness, and analysis run-time.

Software Versions: Evaluation was carried out for Chromium version 38
(dated August 2014), for Firefox revision 244208 (May 2015), and for MySQL
version 5.7.7 (April 2015).

Evaluation Setup: Analysis was performed in an Amazon compute instance
running Ubuntu 14.04 and provisioned with 36 virtual (Intel Xeon E5-2666 v3)
CPUs clocked at 2.6 GHz, 60 GB of RAM, and 100 GB of SSD-based storage.

Effectiveness

True Positives Our prototype flagged 3 confirmed defects in Chromium, and
Firefox, including a new defect in the latter (see bottom three entries of Table
1). Defects found by our prototype in MySQL codebase have been reported
upstream and are being triaged. Figure 4 shows Mélange’s bug report for a
garbage read in the pdf library shipped with Chromium v38. The source-level
bug report (Figure 4a) shows the line of code that was buggy. WP analyzer’s
bug report (Figure 4b) shows candidate call chains in the libpdf library in which
the uninitialized read may manifest.

We have manually validated the veracity of all bug reports generated by
Mélange through source code audits. For each bug report, we verified if the
data-flow and control-flow information conveyed in the report tallied with pro-
gram semantics. We classified only those defects that passed our audit as true
positives. Additionally, for the Chromium true positives, we matched Mélange’s
findings with reports [2, 3] generated by MemorySanitizer [40], a dynamic pro-
gram analysis tool from Google. The new defect discovered in Firefox was re-
ported upstream [1]. Our evaluation demonstrates that Mélange can complement
dynamic program analysis tools in use today.
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Bug Summary

File: out_analyze/Debug/../../pdf/page_indicator.cc
Location: line 94, column 19

Description: Potentially uninitialized object field
Local Path to Bug: chrome_pdf::PageIndicator::fade_out_timer_id_→_

Annotated Source Code

1 // Copyright (c) 2012 The Chromium Authors. All rights reserv
2 // Use of this source code is governed by a BSD-style license
3 // found in the LICENSE file.
4

5 #include "pdf/page_indicator.h"
6

7 #include "base/logging.h"
8 #include "base/strings/string_util.h"
9 #include "pdf/draw_utils.h"

10 #include "pdf/number_image_generator.h"
11 #include "pdf/resource_consts.h"
12

13 namespace chrome_pdf {
14

15

16 PageIndicator::PageIndicator()
17 : current_page_(0),
18 // fade_out_timer_id_(0),
19 splash_timeout_(kPageIndicatorSplashTimeoutMs),
20 fade_timeout_(kPageIndicatorScrollFadeTimeoutMs),
21 always_visible_(false) {
22 }
23

24 PageIndicator::~PageIndicator() {
25 }

f/page_indicator.cc
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shTimeoutMs),
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Bug Summary

File: out_analyze/Debug/../../pdf/page_indicator.cc
Location: line 94, column 19

Description: Potentially uninitialized object field
Local Path to Bug: chrome_pdf::PageIndicator::fade_out_timer_id_→_

Annotated Source Code

1 // Copyright (c) 2012 The Chromium Authors. All rights reserv
2 // Use of this source code is governed by a BSD-style license
3 // found in the LICENSE file.
4

5 #include "pdf/page_indicator.h"
6

7 #include "base/logging.h"
8 #include "base/strings/string_util.h"
9 #include "pdf/draw_utils.h"

10 #include "pdf/number_image_generator.h"
11 #include "pdf/resource_consts.h"
12

13 namespace chrome_pdf {
14

15

16 PageIndicator::PageIndicator()
17 : current_page_(0),
18 // fade_out_timer_id_(0),
19 splash_timeout_(kPageIndicatorSplashTimeoutMs),
20 fade_timeout_(kPageIndicatorScrollFadeTimeoutMs),
21 always_visible_(false) {
22 }
23

24 PageIndicator::~PageIndicator() {

---------- page_indicator.cc.pass.html ----------
[+] Parsing bug report page_indicator.cc.pass.html
[+] Writing queries into LLVM pass header file
[+] Recompiling LLVM pass
[+] Selecting LLVM BC for analysis
[+] Target Found: libpdf.a
[+] Running LLVM BugReportAnalyzer pass
-----------------------
Candidate callchain is:
chrome_pdf::PageIndicator::OnTimerFired(unsigned int)
chrome_pdf::Instance::OnControlTimerFired(int, 
unsigned int const&, unsigned int)

(b) Whole-program Bug Report

(a) Source-level Bug Report

Potentially uninitialized object field

81 &buffer,
82 pp::Rect(origin2, page_number_image.size()),
83 false);
84 }
85

86 // Drawing the buffer.
87 pp::Point origin = draw_rc.point();

88 draw_rc.Offset(-rect().x(), -rect().y());
89 AlphaBlend(buffer, draw_rc, image_data, origin, transparency
90 }
91

92 void PageIndicator::OnTimerFired(uint32 timer_id) {
93 FadingControl::OnTimerFired(timer_id);
94 if (timer_id == fade_out_timer_id_) {

95 Fade(false, fade_timeout_);
96 }
97 }
98

Fig. 4: Mélange bug report for Chromium bug 411177.

False Positives Broadly, we encounter two kinds of false positives; those that are
due to imprecision in Mélange’s data-flow analysis, and those due to imprecision
in its control-flow analysis. In the following paragraphs, we describe one example
of each kind of false positive.

Data-flow imprecision: Mélange’s analyses for flagging garbage reads lack
sophisticated alias analysis. For instance, initialization of C++ objects passed-
by-reference is missed. Listing 1.3 shows a code snippet borrowed from the Fire-
fox codebase that illustrates this category of false positives.

When AltSvcMapping object is constructed (see Line 2 of Listing 1.3),
one of its class members mHttps is passed by reference to the callee function
SchemeIsHTTPS. The callee function SchemeIsHTTPS initializes mHttps via its
alias (outIsHTTPS). Mélange’s garbage read checker misses the aliased store and
incorrectly flags the use of class member mHttps on Line 8 as a candidate bug.
Mélange’s garbage read pass, on its part, tries to taint all functions that store
to mHttps. Since the store to mHttps happens via an alias, the pass also misses
the store and outputs a legitimate control-flow sequence in its WP bug report.

Control-flow imprecision: Mélange’s WP analyzer misses control-flow in-
formation at indirect call sites e.g., virtual function invocations. Thus, class
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Codebase Build Time Analysis Run-time∗ Bug Reports

Nt SAx WPAx TAx WPAvgt Stage 1 Stage 2 True Positive

Chromium 18m20s 29.09 15.49 44.58 7.5s 2686 12 2

Firefox 41m25s 3.38 39.31 42.69 13m35s 587 16 1

MySQL 8m15s 9.26 21.24 30.50 2m26s 2494 32 -
∗
All terms except WPAvg are normalized to native compilation time

Table 2: Mélange: Analysis summary for large open-source projects. True posi-
tives for MySQL have been left out since we are awaiting confirmation from its
developers.

members that are initialized in a call sequence comprising an indirect func-
tion call are not registered by Mélange’s garbage read pass. While resolving all
indirect call sites in large programs is impossible, we employ best-effort devir-
tualization techniques such as Rapid Type Analysis [16] to improve Mélange’s
control-flow precision.

1 AltSvcMapping :: AltSvcMapping (...) {

2 if (NS FAILED(SchemeIsHTTPS(originScheme, mHttps))) {
3 ...

4 }

5 }

6 void AltSvcMapping :: GetConnectionInfo (...) {

7 // ci is an object on the stack

8 ci->SetInsecureScheme(!mHttps);
9 ...

10 }

11 static nsresult SchemeIsHTTPS(const nsACString &

originScheme , bool &outIsHTTPS)

12 {

13 outIsHTTPS =
originScheme.Equals(NS LITERAL CSTRING("https"));

14 ...

15 }

Listing 1.3: Code snippet involving an aliased definition that caused a false
positive in Mélange.

The final three columns of Table 2 present a summary of Mélange’s findings
for Chromium, Firefox, and MySQL projects. We find that Mélange’s two-stage
analysis pipeline is very effective at filtering through a handful of bug reports
that merit attention. In particular, Mélange’s WP analyses filter out 99.6%,
97.3%, and 98.7% source level bug reports in Chromium, Firefox, and MySQL
respectively. Although Mélange’s true positive rate is low in our case studies,
the corner cases it has pointed out, notwithstanding the confirmed bugs it has
flagged, is encouraging. Given that we evaluated Mélange against well-tested



15

0 20 40 60 80 100

Chromium

Firefox

MySQL

Fraction of Total Analysis Run-time (%)

SAx

WPAx

Fig. 5: For each codebase, its source and whole-program analysis run-times are
shown as fractions (in %) of Mélange’s total analysis run-time.

production code, the fact that it could point out three confirmed defects in the
Chromium and Firefox codebases is a promising result. We plan to make our
tool production-ready by incorporating insights gained from our case studies.
Next, we discuss Mélange’s analysis run-time.

Analysis Run-Time We completed end-to-analysis of Chromium, Firefox, and
MySQL codebases—all of which have millions of lines of code—in under 48 hours.
Of these, MySQL, and Chromium were analyzed in a little over 4 hours, and 13
hours respectively. Table 2 summarizes Mélange’s run-time for our case studies.
We have presented the analysis run-time of a codebase relative (normalized)
to its build time, Nt. For instance, a normalized analysis run-time of 30 for a
codebase indicates that the time taken to analyze the codebase is 30x longer
than its build time. All normalized run-times are denoted with the x subscript.
Normalized source analysis time, WP analysis time, and total analysis time of
Mélange are denoted as SAx, WPAx, and TAx respectively. The term WPAvgt
denotes the average time (not normalized) taken by Mélange’s WP analyzer to
analyze a single candidate bug report.

Figure 5 shows source and WP analysis run-times for a codebase as a fraction
(in percentage terms) of Mélange’s total analysis run-time. Owing to Chromium’s
modular build system, we could localize a source defect to a small-sized library.
The average size of program analyzed for Chromium (1.8MB) was much lower
compared to MySQL (150MB), and Firefox (1.1GB). As a consequence, the
WP analysis run-times for Firefox, and MySQL are relatively high. While our
foremost priority while prototyping Mélange has been functional effectiveness,
our implementation leaves significant room for optimizations that will help bring
down Mélange’s end-to-end analysis run-time.

4.5 Limitations

Approach Limitations By design, Mélange requires two analysis procedures at
different code abstractions for a given defect type. We depend on programmer-
written analysis routines to scale out to multiple defect types. Two actualities
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lend credence to our approach: First, analysis infrastructure required to carry
out extended analyses is already available and its use is well-documented. This
has assisted us in prototyping Mélange for four different CWEs. Second, the
complexity of analysis routines is many times lower than the program under
analysis. Our analysis procedures span 2, 598 lines of code in total, while our
largest analysis target (Chromium) has over 14 million lines of C++ code.

While Mélange provides precise diagnostics for security bugs it has discov-
ered, manual validation of bug reports is still required. Given that software
routinely undergoes manual review during development, our tool does not intro-
duce an additional requirement. Rather, Mélange’s diagnostics bring attention
to problematic corner cases in source code. The manual validation process of
Mélange’s bug reports may be streamlined by subsuming our tool under existing
software development processes (e.g., nightly builds, continuous integration).

Implementation Limitations Mélange’s WP analysis is path and context insen-
sitive. This makes Mélange’s whole-program analyzer imprecise and prone to
issuing false warnings. To counter imprecision, we can augment our WP ana-
lyzer with additional analyses. Specifically, more powerful alias analysis and ag-
gressive devirtualization algorithms will help prune false positives further. One
approach to counter existing imprecision is to employ a ranking mechanism for
bug reports (e.g., Z-Ranking [31]).

5 Related Work

Program analysis research has garnered attention since the late 70s. Lint [29], a
C program checker developed at Bell Labs in 1977, was one of the first program
analysis tools to be developed. Lint’s primary goal was to check “portability,
style, and efficiency” of programs. Ever since, the demands from a program
checker have grown as new programming paradigms have been invented and
programs have increased in complexity. This has contributed to the development
of many commercial [5, 23, 27], closed-source [19], free [6], and open source [4,
15, 17, 18, 22, 26, 39, 40, 43, 44] tools. Broadly, these tools are based on Model
Checking [17, 26], Theorem Proving [6], Static Program Analysis [4, 5, 19, 23, 27,
44], Dynamic Analysis [18, 34, 39, 40], or are hybrid systems such as AEG [15].
In the following paragraphs, we comment on related work that is close in spirit
to Mélange.

Program Instrumentation Traditionally, memory access bugs have been found
by fuzz testing (or fuzzing) instrumented programs. The instrumentation takes
care of tracking the state of program memory and adds run-time checks before
memory accesses are made. Instrumentation is done either during run time (as in
Valgrind [34]), or at compile time (as in AddressSanitizer or ASan [39]). Compile-
time instrumentation has been preferred lately due to the poor performance of
tools that employ run-time instrumentation.
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While sanitizer tools such as ASan, and MemorySanitizer (MSan) are ex-
pected to have a zero false positive rate, practical difficulties, such as uninstru-
mented code in an external library, lead to false positives in practice. Thus, even
run-time tools do not eliminate the need for manual validation of bug reports. To
guarantee absence of uninitialized memory, MSan needs to monitor each and ev-
ery load from/store to memory. This all-or-nothing philosophy poses yet another
problem. Uninstrumented code in pre-compiled libraries (such as the C++ stan-
dard library) used by the program will invariably lead to false program crashes.
Until these false crashes are rectified—either by instrumenting the code where
the crash happens or by asking the tool to suppress the warning—the sanitizer
tool is rendered unusable. Thus, use of MSan impinges on instrumentation of
each and every line of code that is directly or indirectly executed by the pro-
gram or maintenance of a blacklist file that records known false positives. Unlike
MSan, not having access to library source code only lowers Mélange’s analysis
accuracy, but does not impede analysis itself. Having said that, Mélange will
benefit from a mechanism to suppress known false positives. Overall, we believe
that dynamic tools are invaluable for vulnerability assessment, and that a tool
such as ours can complement them well.

Symbolic Execution Symbolic execution has been used to find bugs in programs,
or to generate test cases with improved code coverage. KLEE [18], Clang SA [4],
and AEG [15] use different flavors of forward symbolic execution for their own
end. As the program (symbolically) executes, constraints on program paths (path
predicates) are maintained. Satisfiability queries on path predicates are used to
prune infeasible program paths. Unlike KLEE and AEG, symbolic execution
in Clang SA is done locally and hences scales up to large codebases. Anecdotal
evidence suggests that KLEE and AEG don’t scale up to large programs [25]. To
the best of our knowledge, KLEE has not been evaluated against even medium-
sized codebases let alone large codebases such as Firefox and Chromium.

Static Analysis Parfait [19] employs an analysis strategy that is similar in spirit
to ours. It employs multiple stages of analysis, where each successive stage is
more precise than the preceding stage. Parfait has been used for finding buffer
overflows in C programs. In contrast, we have evaluated Mélange against mul-
tiple vulnerability classes. Mélange’s effectiveness in detecting multiple CWEs
validates the generality of its design. In addition, Mélange has fared well against
multiple code paradigms: both legacy C programs and modern object-oriented
code.

Like Yamaguchi et al. [44], our goal is to empower developers in finding mul-
tiple instances of a known defect. However, the approach we take is different.
Yamaguchi et al. [44], use structural traits in a program’s AST representation
to drive a Machine Learning (ML) phase. The ML phase extrapolates traits of
known vulnerabilities in a codebase, obtaining matches that are similar in struc-
ture to the vulnerability. CQUAL [22], and CQual++ [43], are flow-insensitive
data-flow analysis frameworks for C and C++ languages respectively. Oink per-
forms whole-program data-flow analysis on the back of Elsa, a C++ parser, and
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Cqual++. Data-flow analysis is based on type qualifiers. Our approach has two
advantages over Cqual++. We use a production compiler for parsing C++ code
that has a much better success rate at parsing advanced C++ code than a cus-
tom parser such as Elsa. Second, our source-level analysis is both flow and path
sensitive while, in CQual++, it is not.

Finally, Clang Static Analyzer borrows ideas from several publications in-
cluding (but not limited to) [24, 37]. Inter-procedural context-sensitive analysis
in Clang SA is based on the graph reachability algorithm proposed by Reps et
al. [37]. Clang SA is also similar in spirit to Metal/xgcc [24].

6 Conclusion

We have developed Mélange, a static analysis tool for helping fix security-critical
defects in open-source software. Our tool is premised on the intuition that vul-
nerability search necessitates multi-pronged analysis. We anchor Mélange in the
Clang/LLVM compiler toolchain, leveraging source analysis to build a corpus of
defects, and whole-program analysis to filter the corpus. We have shown that
our approach is capable of identifying defects and vulnerabilities in open-source
projects, the largest of which—Chromium—spans over 14 million lines of code.
We have also demonstrated that Mélange’s analyses are viable by empirically
evaluating its run-time in an EC2 instance.

Since Mélange is easy to deploy in existing software development environ-
ments, programmers can receive early feedback on the code they write. Fur-
thermore, our analysis framework is extensible via compiler plug-ins. This en-
ables programmers to use Mélange to implement domain-specific security checks.
Thus, Mélange complements traditional software testing tools such as fuzzers.
Ultimately, our aim is to use the proposed system to help fix vulnerabilities in
open-source software at an early stage.
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